系统辨识

频道:电子元器件 日期: 浏览:472

系统辨识

本文内容来自于互联网,分享系统辨识

根据系统的输入输出时间函数来确定描述系统行为的数学模型。现代控制理论中的一个分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。

系统辨识

  辨识的基本步骤为:①先验知识和建模目的的依据。先验知识指关于系统运动规律、数据以及其他方面的已有知识。这些知识对选择模型结构、设计实验和决定辨识方法等都有重要作用。用于不同目的的模型可能会有很大差别。②实验设计。辨识是从实验数据中提取有关系统信息的过程,设计实验的目标之一是要使所得到的数据能包含系统更多的信息。主要包括输入信号设计,采样区间设计,预采样滤波器设计等。③结构辨识。即选择模型类中的数学模型M的具体表达形式。除线性系统的结构可通过输入输出数据进行辨识外 ,一般的模型结构主要通过先验知识获得。④参数估计。知道模型的结构后,用输入输出数据确定模型中的未知参数。实际测量都是有误差的,所以参数估计以统计方法为主。⑤模型适用性检验。造成模型不适用主要有三方面原因:模型结构选择不当;实验数据误差过大或数据代表性太差;辨识算法存在问题。检验方法主要有利用先验知识检验和利用数据检验两类。

系统辨识

  凡是需要通过实验数据确定数学模型和估计参数的场合都要利用辨识技术,辨识技术已经推广到工程和非工程的许多领域,如化学化工过程、核反应堆、电力系统、航空航天飞行器、生物医学系统、社会经济系统、环境系统、生态系统等。适应控制系统则是辨识与控制相结合的一个范例,也是辨识在控制系统中的应用。

关键词:辨识系统