功率谱(功率谱密度)

频道:电子元器件 日期: 浏览:347

功率谱

本文内容来自于互联网,分享功率谱(功率谱密度)

功率谱(功率谱密度)

周期运动在功率谱中对应尖锋,混沌的特征是谱中出现"噪声背景"和宽锋。它是研究系统从分岔走向混沌的重要方法。 在很多实际问题中(尤其是对非线性电路的研究)常常只给出观测到的离散的时间序列X1, X2, X3,...Xn,那么如何从这些时间序列中提取前述的四种吸引子(零维不动点、一维极限环、二维环面、奇怪吸引子)的不同状态的信息呢? 我们可以运用数学上已经严格证明的结论,即拟合。我们将N个采样值加上周期条件Xn+i=Xi,则自关联函数(即离散卷积)为 然后对Cj完成离散傅氏变换,计算傅氏系数。 Pk说明第k个频率分量对Xi的贡献,这就是功率谱的定义。当采用快速傅氏变换算法后,可直接由Xi作快速傅氏变换,得到系数 然后计算 ,由许多组{Xi}得一批{Pk'},求平均后即趋近前面定义的功率谱Pk。 从功率谱上,四种吸引子是容易区分的,如图12 (a),(b)对应的是周期函数,功率谱是分离的离散谱 (c)对应的是准周期函数,各频率中间的间隔分布不像(b)那样有规律。 (d)图是混沌的功率谱,表现为"噪声背景"及宽锋。 考虑到实际计算中,数据只能取有限个,谱也总以有限分辨度表示出来,从物理实验和数值计算的角度看,一个周期十分长的解和一个混沌解是难于区分的,这也正是功率谱研究的主要弊端。

关键词:功率密度